30M

(Smart Energy/IoT)

IoT) Technology

offices

Design

demonstration of

energy monitoring

Monitoring & Network/

systems for government

(Smart devices) Design

and development of

local energy-efficient

conceptualization of

technology research

development of energy-

efficient lighting control

electric motors

energy-efficient

center (NICER)

Desian and

systems

Overall Strategies

Human Resource

- Capacity building of MSMEs in energy management and conservation
- Capacity building on local development of energy monitoring software & hardware systems
- Strengthening DOST regional offices energy auditor's capability

R&D Technologies

- Establishment of Philippine MSMEs energy profile using innovative methods and technologies
- Selection and adoption of lowcarbon technologies for MSMEs application
- Technology demonstration of online energy monitoring and reporting system for government offices
- Local development of energyefficient devices and equipment (reluctance electric motors, lightings, waste-heat recovery systems, energy data analytics, full energy management control systems)

Facilities / Services

- Establishment of Energy Research and Innovation Center (NICER)
- Establishment of Energy-Efficient Technology Aggregator Hub

S&T Policies

Development of policy recommendations for MSMEs incentive for the use of energyefficient technologies

POSSIBLE SOLUTIONS

60M

- Energy profiling of Philippine MSMEs using innovative methods and technologies
- (Energy Recovery) Local development of lowcarbon technology i.e. heat recovery system/HVAC energy management systems/ control system software and hardware design
- Energy auditing of 24 large industries in NCR

2023

147M

Energy auditing of 26 large industries in Region-3

ESCOs techno-demo of lowcarbon technologies for **MSMEs**

Energy profile establishment (ice plant facilities, food manufacture, logistic facilities)

Installation of smart EMS for selected LGUs (10) and government buildings (10)

2025

20M

- (Smart Energy) Technology scoping for next-generation energyefficient systems research and development (lightings, devices, equipment)
- Energy management adoption and exploitation for government offices

Legend

(Text Font):

Done

Next-generation eneray-efficient technology developed

2026

Energy-efficient government offices compliant to GEMP/ RA11285

MILESTONES

VISION

Ongoing

NAST Foresight

Thematic Area

Geographical

Cost-competitive locally developed energy-efficient technologies

Not yet

Available

Energy-efficient MSMEs and Government Offices

Overall Outcomes

Human Resource

2028

- Technology equipped and energy-efficient MSMEs
- · New skills developed on energy management systems software/hardware design
- DOST regional offices energy auditors capacitated on new technology trends
- Increased numbers of energy researchers and developers

R&D Technologies

- New industry business opportunities on the development of local technologies (reluctance motors, EMS control systems, software and hardware systems)
- · Increased numbers of energy research and development projects

Facilities / Services

- Network and linkages established for local R&D collaboration thru NICER
- · Central hub established for energy-efficient technology acquisition (supply and services)

S&T Policies

 Recommended S&T-based policy on the use of energyefficient technologies

2024

- Philippine MSMEs energy profile established
- Low-carbon and energy-efficient technologies adopted for MSMEs application
- Locally developed energy-efficient equipment. management systems and controls
- 24 industries audited (NCR) / food manufacture, plastic and rubber products, electrical/electronics

2021

2022

Energy-efficient

Locally developed

reluctance motor

Research (NICER)

Energy-efficient

lighting control

systems

Energy-efficient Tech

preliminary concept

proposal developed

RA11285

government offices

compliant to GEMP/

Energy: Micro-hydro Power (MHP) Program

Overall Strategies

Human Resource

- · Capacity building on Micro-hydro turbine design/fabrication
- Capacity building on Micro-hydro site assessment/evaluation
- Capacity building on Micro-hydro operation and maintenance

R&D Technologies

- New and emerging turbine technologies
- Localization of electromechanical components
- Development of hydrokinetic turbines
- Low-head, low flow hydraulic turbine technology • Supply-chain analysis of available MHP technologies

Facilities / Services

Establishment of Micro-hydro Turbine testing facility

S&T Policies

• Development of S&T-based policies for MHP technology Design and development of novel micro-hydro turbines, housing, and load controllers

Utilization of irrigation channels for MHP technology applications

50M

M09

- Design and development of hydrokinetic turbines
- Design and development of low-head/low-flow micro-hydro turbines
- Demonstration of hybrid microgrid RE facility (wind, solar, hydro

- Improvement of MHP research facility
- Development of local MHP equipment
- Design and development of cascading MHP systems

- Microgrid RE system
- Local turbine inventory assessment and fabrication capability

40M

 MHP performance and efficiency improvement

Thematic Areas

Technology Development

Application and Demo

20M

POSSIBLE SOLUTIONS

- Technology development for aggregation and synchronization of multiple micro-pico hydro systems
- Strengthen performance and efficiency characterization standards

2024

30M

- Flow regulation automation and controls
- Improvement on pumpturbine including multiple units and AC-excitation control for start-stop

50M

- Integration of Deriaz type turbine for micro hydro application
- Improvement of hydrodynamic screw type turbine for possible irrigation channel application

30M

Introduction of variable speed turbine (part-full loading) coupling with converter fed synchrounous or double fed induction

Legend

(Text Font):

Not yet Available

VISION

- Cost-effective and efficient MHP technology
- Increase energy reserve thru MHP utilization
- Competitive MHP industry

- Automation and control systems for MHP system - Off-grid/Grid integrated facility Local development of pump as turbines for
- energy generation application

Overall Outcomes

Human Resource

 New skill acquired and increased workforce capacity on MHP design, fabrication, assessment, and operation/maintenance

R&D Technologies

 Local and competitive MHP parts and components developed

2028

 New and cost-effective MHP technology developed

Facilities / Services

- Micro-hydro turbine research facility established
- Increased number of MHP industry catered thru the facility

S&T Policies

Policy recommendations for MHP technologies

2025

generation utilizing multiple MHP resources

MILESTONES

NAST Foresight

rainwater in high rise building

Microhydro Systems using

Carbon neutral resorts

2026

- Novel MHP turbine design and application Improvement of MHP penetration to energy mix due to increase resource utilization
- Hybrid microgrid RE+MHP facility demonstrated
- Low-head and low-flow micro-hydro turbine designed and developed
- Hydrokinetic turbines design and developed

2022

Simulation and modeling facility

2023

- Improved energy generation through cacading MHP
- Localized micro-hydro electromechanical components

2021

- Improved capability on MHP fabrication
- Locally developed BOS components
- Bankable MHP system components improved
- Microarid system utilizing RE resources evaluated

15M

service laboratory/facility

Establishment of shared

for biomass feedstock

development and R&D

Overall Strategies

Human Resource

- Consultation meeting with hydrogen industries and experts
- Improve local expertise on hydrogen development, from feedstock to utilization
- Capacity building on hydrogen storage design and development
- Capability building on hydrogen logistics and transportation

R&D Technologies

- Hydrogen production from biomass and other renewable sources
- Design and development of hydrogen production system
- Development of alternative storage of electricity from renewables to run electrolysers to produce hydrogen on-site
- Development of cost effective and durable catalyst and membranes
- R&D on hydrogen storage and transport

Facilities / Services

- Establishment of shared service laboratory/facility for biomass feedstock development and R&D
- Hydrogen evaluation facility

S&T Policies

· Minimial Life Cycle Cost and environmental impact on hydrogen production strategy and projects

POSSIBLE SOLUTIONS

15M

 Hvdroaen Storaae R&D. involving compressed and liquid hydrogen.

20M

- Liquid biofuel conversion via liquid reforming
- Development of Dark Fermantative hydrogen produ ction and microbial electolysis cell 2024 2025 2026

30M

- Development of membrane technologies for separating and purfying hydrogen
- Development of water gas shift reactors and hydrogen compression technology

30M

- Hydrogen production from biomass conversion
- Design and development of hydrogen production system

2022

- Biomass derived hydrogen
- Alternative hydrogen production via Renewable Liquid reforming
- Solar assisted hydrogen production
- Cost-effective and efficient membrane technologies for hydrogen separation and purification

MILESTONES

10M

 Small scale distributed hydrogen production using

VISION

- Locally developed cost effective and durable hydrogen production system
- New industry on hydrogen sector

2028

- Solar Driven water gas shift reactors Hydrogen storage facility including, high pressure tanks, metal/chemical hvdrides

Overall Outcomes

Human Resource

• Increase in expertise and skills in hydrogen production technology

R&D Technologies

- New industry and business opportunities in the hydrogen production sector
- Uptake on Hydrogen application, including power generation and vehicle

Facilities / Services

 Shared services facility and linkages for hydrogen development and utilization

S&T Policies

 Recommended S&T based policy l=on hydrogen development and utilization

20M

Design and development of new methodology for hydrogen extraction using renewable energy

- 2021
- Demonstration facility for hydrogen production utilizing RE system (electrolysis)
- Innovative methodologies for hydrogen extraction using renewable energy
- Cost-effective and efficient locallydesigned and developed electrolysis cells
- Hydrogen production through gasification

Initial Draft – For Sectoral Consultation

VISION

industry

community

Competitive ocean energy

Increase energy reserve thru

ocean energy utilization

Increase number of rural

electrification on island

Overall Strategies

Human Resource

- Capacity building on ocean energy resource assessment/ ocean thermal energy conversion
- Capacity building on ocean turbine system services, repair and maintenance for project sustainability

R&D Technologies

- Detailed resource assessment for remote island communities (wave, tidal, marine current)
- Design and development of mechanical harvesting device modeling tools
- Design and development of wave energy harvesting systems

Facilities / Services

Establishment of ocean energy research facility (wave and marine current)

S&T Policies

 Development of S&T-based policies for ocean energy technology adoption

POSSIBLE SOLUTIONS

15M

- · Hydrokinetic turbine demonstration for grid integration.
- Wave array energy conversion modellling
- Power absorption geometry and controls

2027

10M

2026

 Capacity building on ocean thermal energy conversion resource assessment

 Supply-chain analysis for ocean technology from generation to utilization

30M

Design and development of wave energy harvesting system

2022

7M

 Design and development of mechanical harvestina device modeling tools

Ocean energy detailed resource assessment in remote island/isolated communities and other strategic areas (wave, tidal, marine current)

2025

2024

2023

- Supply-chain analysis results for ocean technology available in the market
- Capacitated on ocean thermal energy conversion resource assessment

2028

Wave tank and assessment equipment

Floating platform for wave/tidal demonstration system

Design and development of tidal harvesting equipment

ORE harvesting devices Modeling tools

2021

- Resource assessment data for specific Mindanao areas (wave, tidal)
- Mechanical harvesting device design and development modeling tools
- Performance assessment of mechanical harvesting devices
- Modeling simulation facility for Ocean/Hydrokinetic Technology

MILESTONES

Overall Outcomes

Human Resource

- New energy research opportunities and skills developed
- Increased number of ocean energy researchers

R&D Technologies

- Updated and detailed ocean energy resource
- Locally developed ocean turbine technologies and systems

Facilities / Services

 Ocean energy research facility established (wave, marine current)

S&T Policies

- · Ocean energy technologies exploited
- Increase energy reserve thru ocean energy use

Overall Strategies

Human Resource

- Capacity building on small-wind micro-siting assessment tools development for hybrid applications
- Capacity building on BOS local development
- Improvement in turbine design, fabrication and manufacturing ability

R&D Technologies

- Design and development of micro-sting tools for small wind remote area applications
- Design and development of novel harvesting device for smallwind turbine system - modeling using laboratory level
- · Design and development of wind turbine for hybrid offshore systems
- Improvement of turbine blade design

Facilities / Services

- Establishment of small-wind research facility
- Distributed wind energy system

S&T Policies

• Development of policy based on S&T project results conducted

POSSIBLE SOLUTIONS

design

10M

Novel harvesting device design and assessment:

- Turbine blade design improvement
- Development of improved BOS for small wind turbine systems

15M

• High fidelity modeling using high performance computing

2028

2026

2025

8M

Hybrid offshore system (ocean and wind) assessment and

Development of micro-siting tools 2024 for specific remote island communities' small wind applications

modelina laboratory

hybrid system for microarid system

8M

10M

Design and development of small wind turbine

2023

20M

 Establishment of smallwind turbine research facility

2022

2021

- Development of small-wind turbine system for water-pumping application
- Development of permanentmagnet generator, wind turbine blades, power electronics

- Wind resource data, modeled wind resource/maps for power systems
- Small-wind hybrid turbine developed
- Small-wind turbine research facility established

- Small-scale wind resource assessment database
- Next generation wind technology prototype and demonstratio
- Demonstration facility for hybrid wind/solar/diesel supported microgrid

- Improved blade design to harness available wind speed. including slower speeds
- Balance of system components for wind eneray system components
- Resource maps. technology evaluation results

VISION

- Competitive wind energy industry
- Sustainable wind energy systems
- Increased energy reserve thru renewable energy sources
- Improvement of energy system for the people

Overall Outcomes

Human Resource

Capacitated on the development of small-wind micro-siting tools and balanceof-system (BOS)

R&D Technologies

- Increased number of smallwind energy applications for rural and urban areas
- New technology developed for off-shore wind applications

Facilities / Services

 Increased number of windturbine suppliers catered under the wind research facility

S&T Policies

• Policy recommendations on the use of hybrid microgrid system including small-wind turbine system

Overall Strategies

Human Resource

- Capacity building on solar PV and concentrator testing and validation
- Capacity building on solar PV/ concentrator repair services and maintenance for sustainability

R&D Technologies

- Development of forecasting model for solar installation and resources assessment
- Development of modular stand-alone mobile desalination unit for brackish and seawater
- Solar PV marine floating platform design optimization

Facilities / Services

 Establishment of Solar PV laboratory (certificationtype)

S&T Policies

 Recommendation of S&Tbased policies to support
microgrid RE utilization for off-grid/on-grid applications

Initial Draft – For Sectoral Consultation

POSSIBLE SOLUTIONS

10M

Hybrid

support

facility

floatina

for solar PV

microarid

RE system (RE

combination) to

and operation

Robust marine

platform design

- Solar Energy evolution and diffusion small innovative applications
- CSP mechanism for new thermochemical storage

20M

 Demonstration for New thin film solar pv farms and concentrator applications
Integration of Solar PV to building needs

2026

2025

20M

- Solar PV Marine Floating Platform Design Optimization
- Development of hybrid RE system to support microgrid facility

15M

- Modular Stand Alone and Mobile desalination unit for brackish and seawater
- Establishment of Solar PV Laboratory (For Certification)

15M

- Development of forecasting model for solar installation and resources assessment
- Solar Home System Energy Use Optimization

60M

- Localization of efficient solar thermal system, i.e. concentrators, for drying, portable water production
- Demonstration of Micro Grid RE system

2022

2021

- CSP system for energy generation and heating purposes
- Demonstration site for Microgrid PV system

 Web-GIS information on solar data with emphasis on cloud variation and meteorological

2023

2024

 Solar home energy management system

data

- Cost-efficient solar desalination system for potable water
- Solar PV Testing facility and Balance of System for component test
- Support to PV standards development
- Improvement and bankable PV system components
- Cost effective balance of system components of PV, inverters, combiners and co nverters

MILESTONES

VISION

- Competitive solar PV industry
- Energy reserve increased thru renewable energy for human utilization

Overall Outcomes

Human Resource

- Increased capacity on solar PV and concentrator testing services
- New skills acquired for solar PV/concentrator services, repair and maintenance

R&D Technologies

- Optimized solar home system for off-grid areas
- Web-GIS based information solar data established
- Cost-effective solar desalination system for additional potable water source developed
- Cost competitive balance-ofsystem (BOS)

Facilities / Services

 Solar PV and BOS testing facility established

S&T Policies

 Microgrid RE system using solar PV exploited for off-grid areas

Overall Strategies

Human Resource

 Capacity building on hydrogen production using biomass technology

R&D Technologies

- · Design and development of cost-effective process to produce biofuels from agribased resources
- Hydrogen gas production using environmentally sound technologies
- Assessment and evaluation of Non-food and other possible energy crops
- Methods and Tools development for enhancing Waste Analysis and Characterization Study (WACS)

Facilities / Services

- Establishment of WTE demonstration facility
- Shared service facility for feedstock analysis and evaluation
- NICER facility for WTE

S&T Policies

- Development of S&T-based policies supporting biomass technology utilization
- Science Based approach on promotion of WTE facility. including emission compliance

POSSIBLE SOLUTIONS

15M

- Develop technologies to improve the use of hemi cellulosic materials
- Development and assessment for biogas storage and transport

2028

Novel conversion

Biogas transportation

methods, processes and

equipment developed

technologies

10M

2026

Develop new catalysts and catalytic and separation process

20M

- Improve pyrolysis systems to produce bio-oils from cellulosic feedstock at high efficiency rates
- Locally developed biogas gas engines

10M

Development of superior feedstock crop plants with improved yield and quality

10M

• Development of Innovative and novel conversion technology from feedstock to finished fuel (algae, energy crops, forest resources

 Advanced algal system to lower the cost of producing algal biofuels and bioproducts

8M

process to produce biofuels from

Development of cost-effective

2025

2023

Endemic energy crops with high yield rate. 2022

Efficient and effective pyrolysis facility

Cost competitive gas engines

40M

Design and development of waste-to-energy from Municipal Solid Waste (MSW)

agri-based resources

2021

- Biofuel production from alternative feedstock
- Cost effective and efficient algal biofuel development
- Waste-to-Energy (WTE) demonstration facility
- Co-hydrothermal process for MSW and biomass, gasification and production of syngas for energy generation

MILESTONES

VISION

- Cost-competitive biomass energy production
- Increase energy reserve thru biomass energy use
- Competitive biomass industry
- Utilization of waste resources for the benefit of the people

Overall Outcomes

Human Resource

 Capacitated experts on biomass development, from feedstock to fuel

R&D Technologies

- New conversion technologies developed in biomass energy production
- Increased energy use and alternative energy production

Facilities / Services

 WTE biomass research facility established

S&T Policies

 Policy developed for biomass technology exploitation

Microgrid Renewable Energy R&D Roadmap

Overall Strategies

Human Resource

- Capacity building on microgrid renewable energy operation, maintenance, and sustainability (end-users and technology adoptors)
- Capacity building on microgrid services i.e. parts and components outsourcing, repair services, etc.

R&D Technologies

- Design and development of cost-effective balance-ofsystems (BOS)
- Demand side management development
- Design and development of energy optimization tools
- Design and development of microgrid RE with energy storage system
- Integration of data analytics for optimum energy use
- Demand-side management development
- Supply-chain analysis (generation, transmission, distribution, utilization)

Facilities / Services

- Establishment of solar and ocean research facility
- Establishment of small-wind turbine research facility
- Development of data-sharing platform and microgrid test-bed research facility

S&T Policies

 Development of policy recommendations for microgrid technology use i.e. incentives, support facilities, tariffs, etc.

POSSIBLE SOLUTIONS

100M

- Design and development of costeffective BOS, control systems, and demandside management system
- Supply-chain analysis (generation – utilization)
- Data analytics integration for energy flow and safety
- Development of datasharing platform and test-bed facility 202/4

2023

- Concentrating solar and ocean research facility established
- Small-wind facility for turbine testing and micro-siting applications established
- Energy-efficient Tech Research (NICER) preliminary concept proposal developed

20M

- Development of microgrid systems for urban applications
- Microgrid modelling using suppressed load methods
- Scoping of nextgeneration microgrid technologies

2025

- Cost-effective and locally developed microgrid components (BOS, contollers, management systems)
- Supply-chain analysis established
- Improved dataanalytics for energy optimization and safety
- Data-sharing platform established

 Microgrid systems for off-grid/on-grid applications demonstrated

Not yet

Overall Outcomes

Human Resource

Legend

 Microgrid renewable sustainability and maintenance capacitated

R&D Technologies

- Cost-competitive and accessible microgrid technology
- Increased number of microgrid researchers and developers

Facilities / Services

- Network and linkages established for local R&D collaboration between universities and academe
- Service accessibility for performance testing and validation of available concentrating solar/ ocean technologies

S&T Policies

 Recommended S&T-based policy on the use of microgrid systems both for off-grid and on-grid settings

2021

2022

50M

concentrating solar and

Establishment of small-

wind turbine research

Establishment of Solar PV

Establishment of

research facility

Conduct of on-grid

research facility

microgrid feasibility

tidal/wave

facility

study

MILESTONES

Energy Storage R&D Roadmap

Overall Strategies

Human Resource

- Hiring of experts and consultants for energy storage development
- New battery architecture training and development
- Indigenous material assessment
- Design, development, and simulation program/experts
- Training on energy storage assessment/evaluation
- Establishment/organizing energy storage system association

R&D Technologies

- New and emerging energy storage system technologies
- Analysis of industry and energy storage stakeholders
- Development of chemical, electrochemical, and mechanical energy storage systems
- Development of standards and testing procedure/protocol for energy storage system
- Local material utilization for battery systems
- Household integration of energy storage systems

Facilities / Services

- Energy storage R&D facility and innovation center
- Indigenous materials for energy storage assessment and evaluation facility
- Energy storage system test facility Nickel-iron battery

S&T Policies

 Development of S&T-based policies for energy storage technologies

POSSIBLE SOLUTIONS

50M

- Hydrogen production from RE sources
- Continuation of leadacid battery life span improvement

70M

- Hydrogen-based storage system
- Battery systems from indigenous materials and process
- Nickel-iron battery development
- Integration of energy storage to grid/off-grid applications

Legend

(Text Font):

VISION

Done

Cost-effective and efficient energy storage system for the people utilizing indigenous materials

Ongoing

NAST Foresight

Thematic Area

Geographical

Not yet

Available

100M

- Establishment of energy storage R&D facility and innovation center
- Energy storage system testing facility

2025

2024

Development of energy management system for flywheel energy storage system (FESS)

5M

2022

2023

- Energy storage management system developed for flywheel applications
- 20 Ah, 70 Ah, 120 Ah, Al-air reactor developed
- New architecture for lead-acid batteries
- Energy storage R&D facility established
- Energy storage system testing facility established
- Battery innovation and testing facility
- Assessment of local indigenous materials
- Support to energy storage standard testing/ protocols
- Improvement on bankable PV energy storage system

2026

- Hydrogen energy production models
- Hydrogen based energy storage facilities, from production, storage, transport and utilization

2027

- Hydrogen-based design for energy storage and production with capacities beyond 10 kW
- Hydrogen gas and fuel cell system training and evaluation
- Locally developed Ni-Fe battery
- Energy storage facility demonstrated

MILESTONES

Overall Outcomes

Human Resource

- Increased number of energy storage system experts and researchers
- New and alternative battery source identified and developed
- Competitive energy storage industry

R&D Technologies

- Electrochemical and nonelectrochemical energy storage technology developed
- Testing standards and protocol established
- Local battery energy storage sources identified

Facilities / Services

- Energy storage R&D facility and innovation center established
- Increased number of energy storage industry catered for testina

S&T Policies

 Policy recommendations on energy storage utilization

25M 2021

power applications

- · Advanced lead-acid development
- improvement

Creation of indigenous battery program for high

Design and development of aluminum-air reactor device

development

• Lead-acid battery life span