Advanced Materials Roadmap

OVERALL STRATEGIES

Needs for Government Facilities and Lab

Continuous support for ADMATEL and PATHS Center

Needs for Human Resources

- Increase awareness of Advanced Materials and Nanotechnology in STEM curriculum, and in industry and among consumers
- Send 10 researchers abroad to raise local talent to global standards by providing exposure and training in renowned researchlaboratories
- Establish programs to obtain visibility into industry needs and open channels for collaboration (e.g. internships, immersions)
- Introduce targeted training electives in Advanced Materials and Nanotechnology to promote employment readiness of graduates for certain industry applications
- Balik Scientist Program to consolidate resources and lead R&D and collaboration efforts in the field (through Advanced Materials and Nanotechnology Hub)
- Improve workforce preparation for opportunities with multinational partners

R&D Program / Project Needs

- Build and publish database withinformation regarding technology researches, publications, laboratories and equipment, and skills developed
- Partner with at least 10 entities for R&D applications and infrastructure co-development
- Various ongoing R&D projects on Advanced Materials
- PATHS Center R&D Projects (2022-2024):
 - Thermal and Structural Analysis on Semiconductor Packages Using Multiphysics Computational Simulation for Space Applications
 - Computational Design and Fabrication of Multifunctional Packaging for Electronics and Semiconductor Applications
 - Determining the Freshness & Spoilage of Crops Using Smart Metal Oxide Gas Sensors for Supply Chain Applications
- Materials Informatics R&D

S&T Policy Initiatives

• Ensure communication of government policy incentives and benefits to stakeholders

400 M Additive manufacturing for Semiconductor/Electronics Aeros pace, Automotive applications, Agriculture and Health:

Development of metal powderfor additive manufacturing * **Development of** supercapacitors out of indigenous materials and waste/by-products **Development of** supercapacitors energy storage and generation out of a dva nced materials (ex.

electrolytes)

400 M

Additive manufacturing for Semiconductor/Electronics, Aeros pace, Automotive applications, agri and health; Develop solid-state supercapacitors and highcapacity supercapacitors out of better materials (conductive polymers, nanometal-oxides. lithiumair)

IC design center / Wafer fab

facility

2022

2021

Additive manufacturing and materials development for various applications

Enhanced capabilities, fun ctionalities and applications **PATHS** Center commenced

Development of smart materials for biodegradable packaging and anti-

Enhanced

capabilities.

applications

functionalities and

corrosion coatings; Deployment for energy generation and storage;

350 M

Development of composite supercapacitors from conductive polymer and nano metal-oxide composites

2023

development for

pharmaceutical

coatings for

companies

and food industries

and anti-corrosion

geothermal energy

Materials

energy,

- Adoption of advanced materials such as intermetallics, nanoclays a nd smart fibers
- composite supercapacitors forelectronics manufacturing

2024

150 M

Flexible solid-state and agriculture and food industry

- enhancement of plant's capacity to absorb nutrients for

2025

100 M

smart phone;

Graphene based sensors for

Ultrasound/Piezoelectric

Micromachined Ultrasonic

for a utomobile industry (for hand

gesture recognition, vehide);

Sensors for harsh environment

Gallium oxides, nitrides, silicon

carbides; Chemical and

occupational health and

environmental monitoring

Rapid disease diagnostics and

biosensors for

Transducers (PMUT)

2026

100 M

- **Bio-Ceramics Bio-Compatible Materials**
- Bio-Glass
- Bio-Inks **Bio-Plastics**
- Carbon Fixing Materials
- **Embedded**
- Logic Materials Hydrogels
- Liquid Armour Liquid Magnets
- Liquid Metal Thermo Bimetals
- Thermoplastic Polyure thane
- Transparent Alumina

2027

Legend (Text Font):

2028

VISION

Provision of enabling technologies for applications beneficial to society.

Advanced capabilities, functionalities and applications

100 M

Atomic Knots

Bio-Materials

Bio-Mineralisation

Living Materials

Metalenses

Materials

Digital Metamaterials

Infinitely Recyclable Plastics

Metal Organic Frameworks

Polymorphic Liquid Metals

Shape Changing Materials

Shape Memory Alloys

Sound Membranes

Super Alloys

Programmable Matter

Reprogrammable Inks /

Reactive Materials

Room Temperature

Superconductors

OVERALL OUTCOME

Locally-developed products and services intended for wide-range of applications