Nanostructured Solar Energy Devices

DR. ARNEL SALVADOR

Program Leader
Condensed Matter Physics Laboratory
National Institute of Physics
University of the Philippines, Diliman

Nanostructured Solar Energy Devices

Funded by DOST PCIEERD, 2010-2014

This program is a collaboration between

Condensed Matter Physics Laboratory

NIP – UP Diliman

- Dr. Arnel Salvador
- Dr. Roland Sarmago
- Dr. Armando Somintac

Ateneo de Manila University

• Dr. Erwin Enriquez

The program addresses various aspects and issues which affect the performance of solid-state and dye-sensitized solar cells.

The Solar Cell

LIGHT → ENERGY

 Light induces the production of electron-hole pairs (charge carriers)

 Charge carriers flow to metal contacts and produce current

Issues on solar cell performance

- Reflection losses
- Shadow loss
- Collection efficiency

Reflection Losses

Inefficient light trapping due to reflection at the front surface

Solution:

- Surface modification (nanostructures)
- Anti-reflection coating (ARC)

Reflection loss account for roughly 30% of the optical loss in silicon solar cells

Anti-reflection coating and surface modification reduce the reflectance of silicon by 70-90%

Nanostructures: Textured silicon

Silicon nanopyramids by chemical texturing

Nanostructures: Silicon nanowires

Silicon nanowires (SiNW)

by metal-assisted electroless etching

ZnO Anti-Reflection Coating

Zinc oxide (ZnO) deposited on textured silicon

Shadow Loss

Fluorine-doped tin oxide (FTO)

Highly transmitting ~80% transmission in the visible region

FTO-graphene nanocomposite for DSSC

Dye-sensitized solar cell (DSSC) structure

10-12% efficiency

Modified graphene as TCO (FTO-graphene nanocomposite)

Single-junction thin film GaAs solar cell

Riber32 Molecular Beam Epitaxy

Fabricated GaAs-based solar cell

Metal Deposition

Mask Aligner

Metal contacts on GaAs solar cell

23.5%

efficiency

Current world record: 28.8% (Alta Devices)

GaAs-based solar cell -Demonstration

LED array powered by the fabricated GaAs solar cell under a sun simulator

National Solar Cell Characterization Facility at NIP

Other studies

Our work on nanostructures will also be utilized in other disciplines and applications in the future:

- Biosensing
- Alternative energy (Thermoelectric and Piezoelectric devices)
- Lab-on-a-Chip (LOC)
- Emerging optical and spectroscopy techniques

Terahertz spectroscopy

Multi-spectral imaging

Doping techniques for silicon

Metallization Techniques

In-house fabricated masks for metallization of macroscopic devices

Nanolithography for other optoelectronic devices (WYKO images)

Karl-Suss mask aligner

Metal-oxide nanostructures for ion-sensing applications

Copper oxide (CuO) nanowires

by thermal oxidation

Zinc Oxide (ZnO) nanowires by chemical bath deposition

Nanostructures provide larger surface areas for adsorption, thus increasing the sensitivity of metal-oxides making them suitable for **ion-sensing applications**.

Human Resource Development

We have trained people capable in the growth, fabrication and characterization of solar cells

GRADUATE STUDENTS in the industry: > 15 MS graduates

RECENT Phd Graduates: 3 graduates

CURRENT GRADUATE STUDENTS, MS and PhD: > 30 students

Various Facilities for Growth, Characterization and Fabrication

