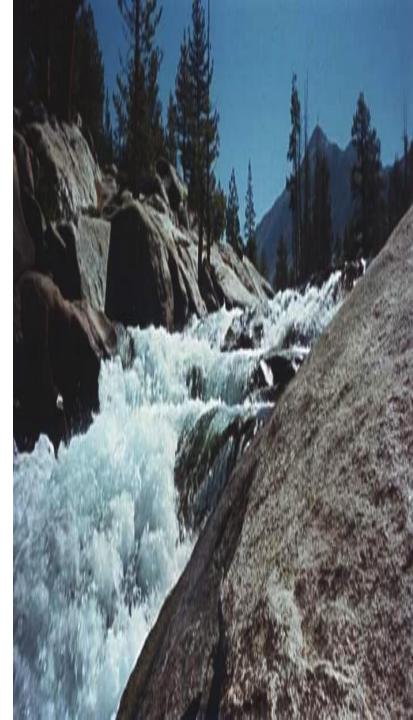


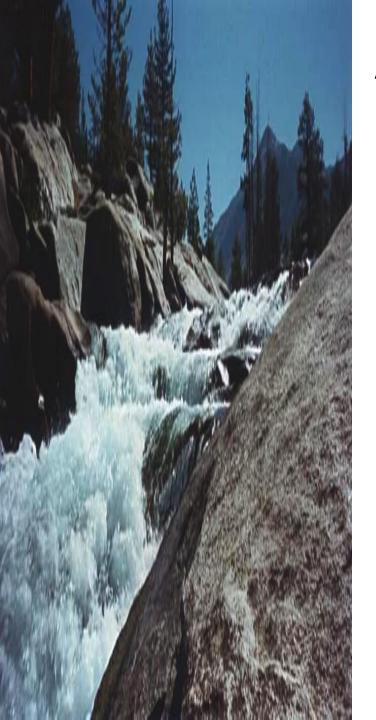
In-Situ **Remediation of Estero de Paco by** the Application of Local Organo Minerals Merlinda A. Palencia,

ASEAN Ch.E., Ph.D.



OUTLINE

I. Introduction


II. Methodology III. Results and Findings

www.shutterstock.com · 146362589

Robust Industrial/Commercial Activities

Application of local Organo Minerals as a viable bioremediaton technique ... Leads to an economic remediation of estuaries, lakes and river

OBJECTIVES

- 1.Determine the physical and chemical properties of estero water before and after remediation in terms of : TSS, Temperature, Odor, pH, DO. BOD, and COD;
- 2. Evaluate the effect of the concentration, treatment time, and application method on the physical and chemical properties of water;

Specific Objectives

- 3. Identify three critical remediation points where the application of organo minerals will have significant contribution to the overall water quality improvement;
- 4. Determine the effective concentration and application method during wet and dry seasons, and at critical organic load condition;

Specific Objectives


5. Compare the effect of the application of the organo minerals with other commercially available remediation enzymes.

II. METHODOLOGY A. Water Sampling > 6 Sampling Sites Aggregate Sample from three sampling points, 1.5-2.0 m apart Samples collected at 1.0

below surface

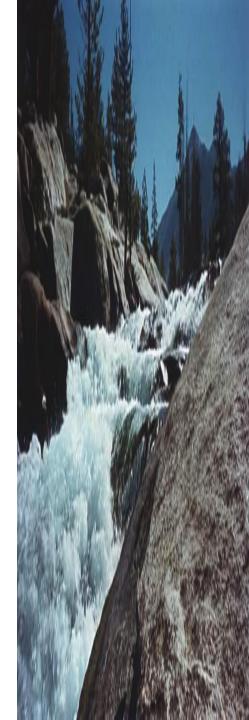
ft

In-Situ Bioremediation

> Organo Minerals Application at 0.5 - 1.5 kg/m³

Sequential powder dispersion & tea bag methods

Floatation system used to make tea bags remain at 1.0 ft below water surface, stationary at specific points

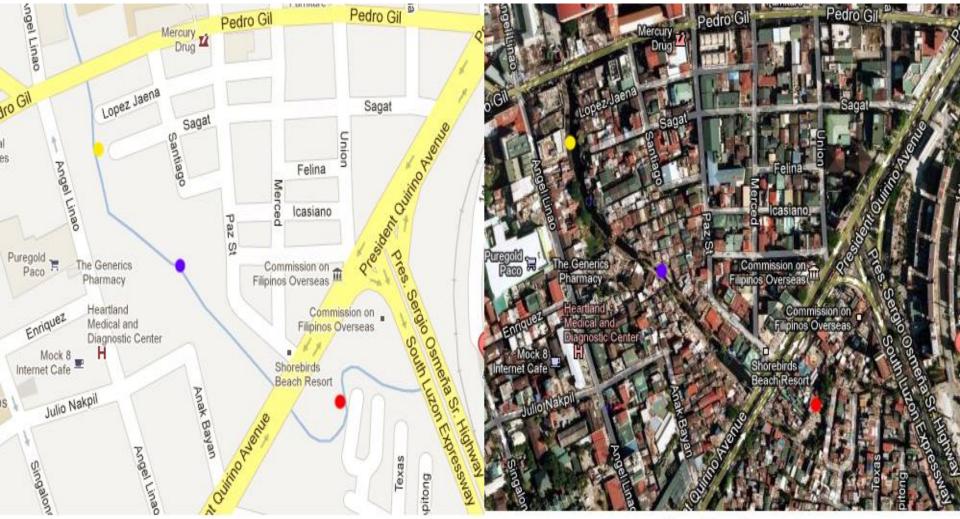

Water Characteristics

Physical & Chemical Properties :

Standard Methods for the

Examination of Water and

Wastewater, APHA, AWWA, WEF 21st Edition.



III. RESULTS

FINDINGS

LOCATION OF SAMPLING SITES 1, 2, & 3:

Satelite View

Sile 3

Latitude - 14.57775


Longitude - 120.99387

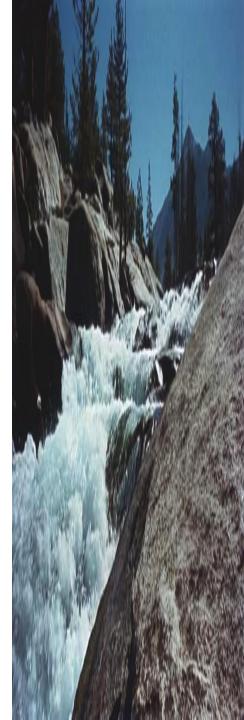
Map View

Site 2 Longitude - 14.57681

LOCATION OF SAMPLING SITES 4, 5, & 6

Map View

Satelite View


Water Sampling

Characterization of Estero Water Before Remediation **pH Value** SITE **Dry Season** Wet Season **S1** 7.1 7.0 **S2** 6.9 7.1

- S37.17.0S47.26.9
- S5 7.1 S6 7.0

7.0
6.9
7.0
6.9
7.0
6.8

Total Suspended Solids (mg/L)

DRY SEASON

WET SEASON

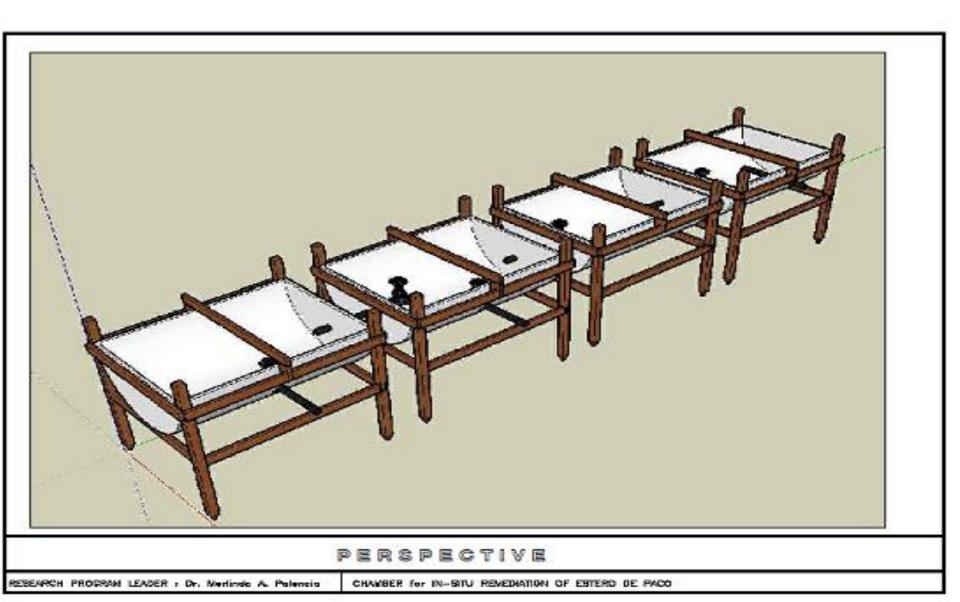
- SITE Low High AVE.
 Low High AVE.

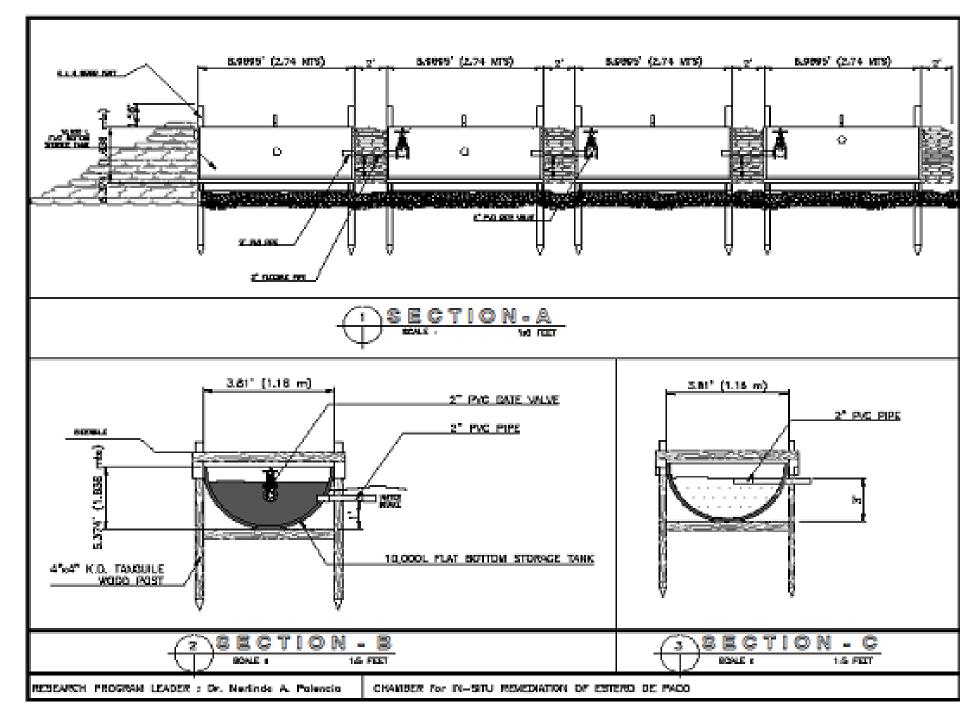
 S1
 39
 800
 224
 35
 46
 41
 - S2 52 448 185 23 118 74
 - S328128702713877
 - S41658432212058
 - S516104492717376S62112051306445

Dissolved Oxygen (mg/L) DRY SEASON WET SEASON SITE Low High AVE. Low High AVE. **S1** 0.7 0.1 0.7 0.4 0 0 **S2** 0.0 0.6 0 0 0 1.0 **S3** 0.0 0 0.2 0.7 0 0.4 **S4** 0 0.7 0.1 0 0.8 0.5 **S5** 0 0.6 0.2 0.7 0.9 0.8 **S6** 0.9 0 0 0.0 0 0.6

Biochemical Oxygen Demand (mg/L)

	DRY	SEAS	ON	WET SEASON		
SITE	Low	High	AVE.	Low	High	AVE.
S1	46	335	144	37	147	104
S2	108	269	169	59	233	142
S3	87	178	139	62	146	109
S4	57	114	97	56	198	123
S5	44	141	93	72	107	85
S6	55	331	137	83	155	107


Chemical Oxygen Demand (mg/L)


DRY SEASON				WET SEASON		
Low	High	AVE.	Low	High	AVE.	
78	462	220	89	179	135	
160	398	263	129	255	211	
160	278	212	129	159	148	
120	198	155	129	466	238	
80	258	150	137	190	155	
120	586	243	119	164	144	
	Low 78 160 160 120 80	LowHigh7846216039816027812019880258	LowHighAVE.7846222016039826316027821212019815580258150	LowHighAVE.Low784622208916039826312916027821212912019815512980258150137	LowHighAVE.LowHigh784622208917916039826312925516027821212915912019815512946680258150137190	

Chemical Oxygen Demand (mg/L)

DRY SEASON				WET SEASON		
Low	High	AVE.	Low	High	AVE.	
78	462	220	89	179	135	
160	398	263	129	255	211	
160	278	212	129	159	148	
120	198	155	129	466	238	
80	258	150	137	190	155	
120	586	243	119	164	144	
	Low 78 160 160 120 80	LowHigh7846216039816027812019880258	LowHighAVE.7846222016039826316027821212019815580258150	LowHighAVE.Low784622208916039826312916027821212912019815512980258150137	LowHighAVE.LowHigh784622208917916039826312925516027821212915912019815512946680258150137190	

Remediation Chamber Construction Plans

• pH Value

- D0 D2 D4 % Change Conc.
- Mean 7.3 8.2 8.4 15.2 @ 1.5 g/L

• Mean 7.1 7.2 7.6 6.7 @ 1.0 g/L

• Mean 7.7 7.8 8.9 15.6 @ 0.5 g/L

1.0 g/L posted lowest Change in pH value

Total Suspended Solids

- D0 D2 D4 % Change Conc.
- Mean 48.5 41.75 37.75 -22.2 @ 1.5 g/L

• Mean 24.5 29 12 -51.0 @ 1.0 g/L

• Mean 88 49.8 34.8 -60.5 @ 0.5 g/L

• 0.5 g/L posted highest reduction in TSS

- Dissolved Oxygen
 - D0 D2 D4 % Change Conc.
- Mean 2.1 2.8 3.4 63.4 @ 1.5 g/L

• Mean 1.9 2.9 4.2 117.4 @ 1.0 g/L

• Mean 1.4 0.9 5.7 268.3 @ 0.5 g/L

• 0.5 g/L posted significant DO Increase

Remediation in Chambers
 Volatile Organic Compounds

 D0
 D2
 D4
 % Change Conc.

 Mean 0.13
 0.06
 0.06
 -53.7
 @ 1.5 g/L

• Mean 2.33 0.12 0.16 -93.1 @ 1.0 g/L

• Mean 0.203 0.13 ---- -34.6 @ 0.5 g/L

1.0 g/L posted significant VOC Reduction

Biochemical Oxygen Demand

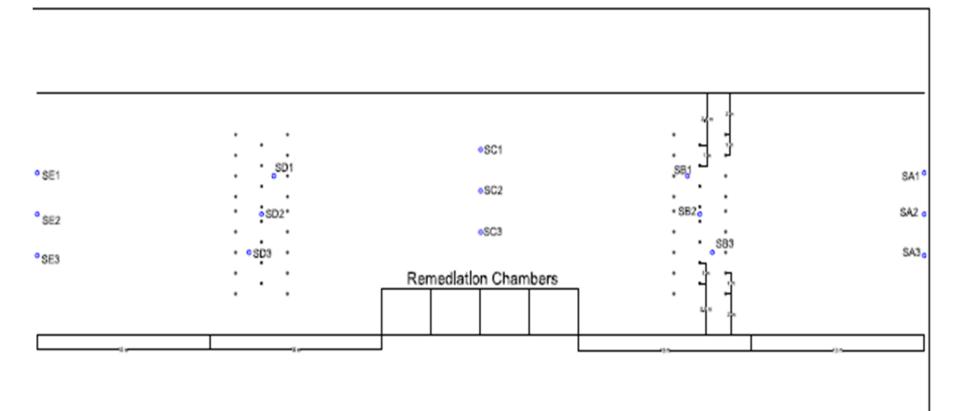
- D0 D2 D4 % Change Conc.
- Mean 212.5 63.75 36.5 -82.8 @ 1.5 g/L

• Mean 78.3 47.0 26.5 -66.1 @ 1.0 g/L

• Mean 62 56.3 26.5 -57.3 @ 0.5 g/L

• 1.5 g/L posted significant BOD₅ Reduction

Chemical Oxygen Demand


- D0 D2 D4 % Change Conc.
- Mean 230 152 92.8 -59.7 @ 1.5 g/L

• Mean 75.8 66.5 39.8 -47.5 @ 1.0 g/L

• Mean 189 154.8 106.0 -43.9 @ 0.5 g/L

1.5 g/L posted significant COD Reduction

SITE DEVELOPMENT PLAN FOR CONTROLLED REMEDIATION AREA

NET Installation @ Remediation Controlled Area

TEA BAG PLACED IN COOPS

IN SITU REMEDIATION

BOD	Day 0	Day 7	Day 14	% Change
Α	297	123	108	-63.6
В	419	150	114	-72.8

COD	Day 0	Day 7	Day 14	% Change
Α	362	195	195	-46.1
В	617	214	195	-68.4

IN SITU REMEDIATION

TSS	Day 0	Day 7	Day 14	% Change
Α	198	68	58	-70.7
B	277	64	76	-72.6
VOC	Day 0	Day 7	Day 14	% Change
Α	0.47	0.335	0.065	-86.2
B	0.385	0.1825	0.115	-70.1

Remediation Area After D4

ORGANO VS. COMMECIAL ENZYME

BOD	Day 0	Day 10	Day 14	% Change
Organo	191	26	36	-81.2
Enzyme	191	210	625	227.2

COD	Day 0	Day 10	Day 14	% Change
Organo	219	39	50	-77.2
Enzyme	219	388	1590	626.0

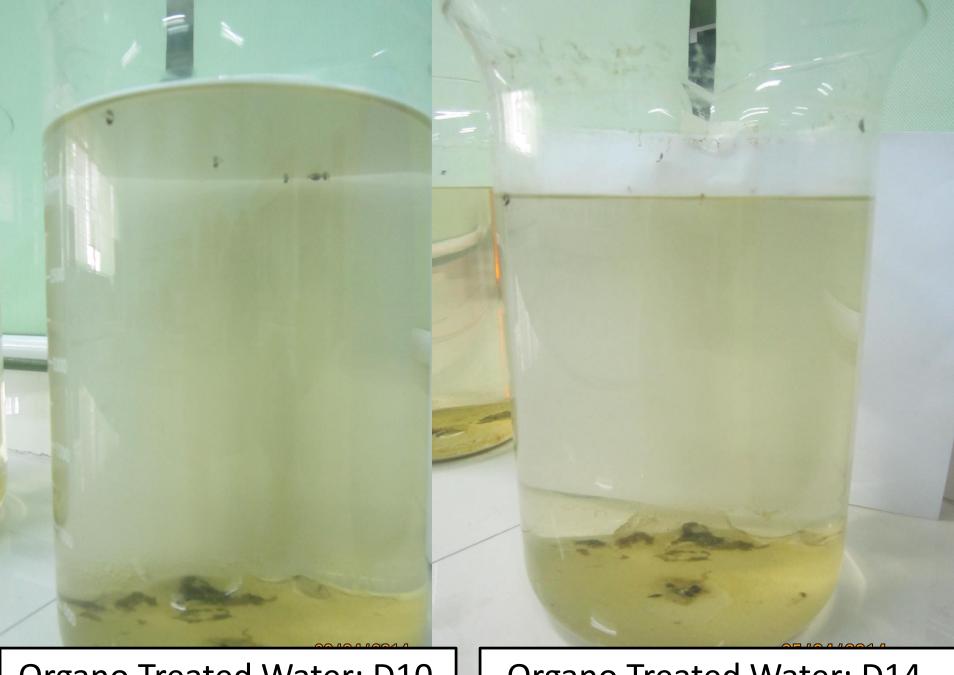
ORGANO VS. COMMECIAL ENZYME

TSS	Day 0	Day 10	Day 14	% Change
Organo	52	4	11	-78.8
Enzyme	52	100	400	669.2

VOC	Day 0	Day 10	Day 14	% Change
Organo	1.65	0.31	1.005	-39.1
Enzyme	1.65	1.415	2.32	40.6

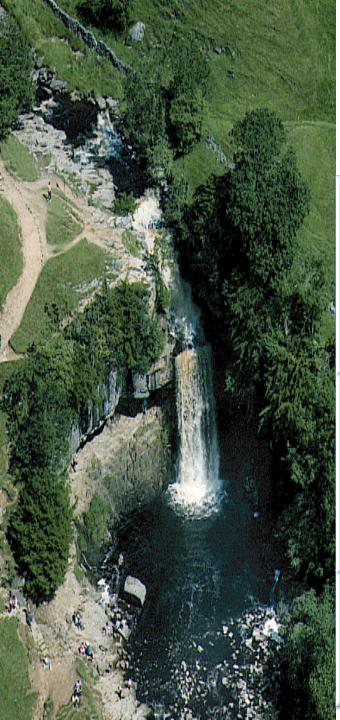
ORGANO VS. COMMECIAL ENZYME

DO	Day O	Day 10	Day 14
Organo	0	4.8	5
Enzyme	0	0	0



WWater Sample: Organo

W Water with Enzyme : DO


EnzymeTreated:D10

Enzyme Treated: D14

Organo Treated Water: D10

Organo Treated Water: D14

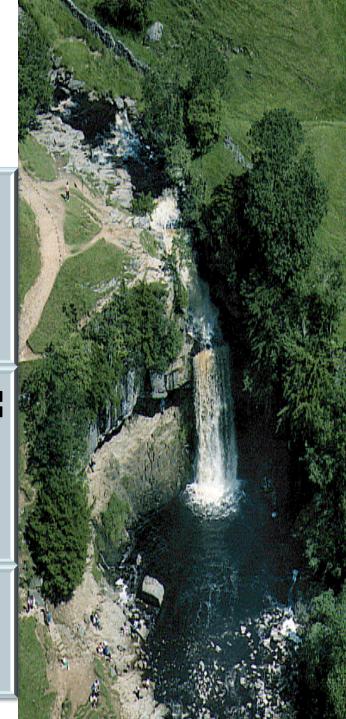
CONCLUSION CHAMBER REMEDIATION

TSS Reduction:
 22- 60% (5 g/L)

2. Odor/VOC Reduction: 35 -93% (1.0 g/L)

3. DO Increase: 1.4 – 5.7 mg/L (1.0 g/L)

CONCLUSION CHAMBER REMEDIATION 1. BOD Reduction : 57 - 83% (1.5 g/L)


2. COD Reduction: 44 - 60% (1.5 g/L)

IN SITU REMEDIATION : @1.0 g/L (D14)

1. TSS Reduction: 71- 73%

2. Odor/VOC Reduction: 70 - 86%

3. DO Increase: 0 – 5 mg/L

IN SITU REMEDIATION : @1.0 g/L (D14)

1. BOD Reduction : 64 - 73%

2. COD Reduction: 46 - 68%

REFERENCES

1. Crites, Ron and Tchobanoglous, George (1998), Small and Decentralized Wastewater Management System, The Mc Graw-Hill Companies, Inc., p70.

- 2. Crittenden, John C. et al. (2005), Water Treatment Principle and Design, 2nd edition, John Wiley and Sons Inc.
- 3. Droste, Ronald L. (1997), Theory and Practice of Water and Wastewater Treatment, John Wiley and Sons Inc.

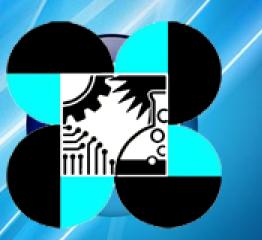
4. Hammer, Mark and Hammer, Mark Jr. (2004), Water and Wastewater Technology, 5th edition. Prentice-Hall, Inc. Upper Saddle River, New Jersey 07458, p.357.

5. Hand, David W. (2003), Wastewater Engineering Treatment and Reuse, Mc Graw-Hill Companies, Inc.

6. Salim, M.R. et al. Application of biochemical products as a bioremediation

technique for domestic sewage treatment plants, Water Science and Technology, Vol. 56, No.7, pp. 33-40. (2007)

7. Viessman, Warren Jr. and Hammer, Mark Jr. (1998);,Water Supply and Pollution Control, 6th edition. Addison Wesley Longman, Inc., pp. 340-341.


 Acknowledgements
 Phil. Council for Industry, Energy, Emerging Technology Research and Development (PCIEERD)

 Pasig River Rehabilitation Commission,
 Kabit-Bisig Para sa Ilog Pasig Foundation
 Mach Union Lab., Inc.
 INCA Plastics Intl.

THANK YOU!

