Nanostructured Solar Energy Devices

DR. ARNEL SALVADOR
Program Leader
Condensed Matter Physics Laboratory
National Institute of Physics
University of the Philippines, Diliman
Nanostructured Solar Energy Devices

Funded by DOST PCIEERD, 2010-2014

This program is a collaboration between
Condensed Matter Physics Laboratory
NIP – UP Diliman
• Dr. Arnel Salvador
• Dr. Roland Sarmago
• Dr. Armando Somintac

Ateneo de Manila University
• Dr. Erwin Enriquez

The program addresses various aspects and issues which affect the performance of solid-state and dye-sensitized solar cells.
The Solar Cell

LIGHT \rightarrow ENERGY

- Light induces the production of electron-hole pairs (charge carriers)
- Charge carriers flow to metal contacts and produce current

Source: RESLAB
Issues on solar cell performance

- Reflection losses
- Shadow loss
- Collection efficiency

![The Solar Spectrum](Image)

- Sunlight at Top of the Atmosphere
- 5250°C Blackbody Spectrum
- Radiation at Sea Level

- UV
- Visible
- Infrared

- Shadow effect due to metal contacts
- Top surface reflection
- Back contact reflection
Reflection Losses

Inefficient light trapping due to reflection at the front surface

Solution:
- Surface modification (nanostructures)
- Anti-reflection coating (ARC)

Reflection loss account for roughly 30% of the optical loss in silicon solar cells

Anti-reflection coating and surface modification reduce the reflectance of silicon by 70-90%
Nanostructures: Textured silicon

Silicon nanopyramids by chemical texturing

- Etchant solution
- Textured silicon
- Photocurrent (a.u.)
 - Increased photocurrent
 - Textured silicon
 - Untextured silicon

% Reflectance for increasing texture time

Silicon nanopyramids by chemical texturing
Nanostructures: Silicon nanowires

Silicon nanowires (SiNW)
by metal-assisted electroless etching

Silicon nanowires with silver nanoparticles

Increased photocurrent

Bare silicon

Decreased reflectance
ZnO Anti-Reflection Coating

Zinc oxide (ZnO) deposited on textured silicon

Textured Si with ZnO

% Reflectance

Wavelength (Angstrom)

decreased reflectance

Textured ZnO

Bare silicon

ZnO coat

Textured Si
Shadow Loss

Typical solar cell

Metal contacts block 10-15% of the area available for light collection

Transparent conducting oxides
Fluorine-doped tin oxide (FTO)

Highly transmitting
~80% transmission in the visible region
Dye-sensitized solar cell (DSSC) structure

- Graphene sensitizer (mesoporous TiO2 with Ru-based dye)
- Solid-phase electrolyte (Perovskite)
- C-based counter electrode

10-12% efficiency

Modified graphene as TCO (FTO-graphene nanocomposite)
GaAs-based solar cells

Silicon solar cells

DSSC

Best Research-Cell Efficiencies
GaAs-based solar cells

Single-junction thin film GaAs solar cell
GaAs-based solar cells

Riber32 Molecular Beam Epitaxy

Fabricated GaAs-based solar cell

Metal Deposition

Mask Aligner
GaAs-based solar cells

Current world record: 28.8% (Alta Devices)
GaAs-based solar cell - Demonstration

LED array powered by the fabricated GaAs solar cell under a sun simulator

National Solar Cell Characterization Facility at NIP
Other studies

Our work on nanostructures will also be utilized in other disciplines and applications in the future:

• Biosensing
• Alternative energy (Thermoelectric and Piezoelectric devices)
• Lab-on-a-Chip (LOC)
• Emerging optical and spectroscopy techniques
 Terahertz spectroscopy
 Multi-spectral imaging
Doping techniques for silicon

Textured silicon (porous Si, Si nanowires, pyramid)

p-type silicon (substrate)

Spray pyrolysis (phosphorus or doped ZnO)

n-type layer

p-type substrate

IV-curve for pn-junction produced using spray pyrolysis
Metallization Techniques

In-house fabricated masks for metallization of macroscopic devices

Nanolithography for other optoelectronic devices (WYKO images)

Karl-Suss mask aligner
Metal-oxide nanostructures for ion-sensing applications

Copper oxide (CuO) nanowires by thermal oxidation

Zinc Oxide (ZnO) nanowires by chemical bath deposition

Nanostructures provide larger surface areas for adsorption, thus increasing the sensitivity of metal-oxides making them suitable for ion-sensing applications.
Human Resource Development

We have trained people capable in the growth, fabrication and characterization of solar cells

GRADUATE STUDENTS in the industry: > 15 MS graduates
RECENT Phd Graduates: 3 graduates
CURRENT GRADUATE STUDENTS, MS and PhD: > 30 students
Various Facilities for Growth, Characterization and Fabrication